Determining the probability of hemiplasy in the presence of incomplete lineage sorting and introgression

Author:

Hibbins Mark S1ORCID,Gibson Matthew JS1ORCID,Hahn Matthew W12ORCID

Affiliation:

1. Department of Biology, Indiana University

2. Department of Computer Science, Indiana University

Abstract

The incongruence of character states with phylogenetic relationships is often interpreted as evidence of convergent evolution. However, trait evolution along discordant gene trees can also generate these incongruences – a phenomenon known as hemiplasy. Classic comparative methods do not account for discordance, resulting in incorrect inferences about the number, timing, and direction of trait transitions. Biological sources of discordance include incomplete lineage sorting (ILS) and introgression, but only ILS has received theoretical consideration in the context of hemiplasy. Here, we present a model that shows introgression makes hemiplasy more likely, such that methods that account for ILS alone will be conservative. We also present a method and software (HeIST) for making statistical inferences about the probability of hemiplasy and homoplasy in large datasets that contain both ILS and introgression. We apply our methods to two empirical datasets, finding that hemiplasy is likely to contribute to the observed trait incongruences in both.

Funder

National Science Foundation

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference77 articles.

1. Bayesian estimation of concordance among gene trees;Ané;Molecular Biology and Evolution,2007

2. Green-blood pigmentation in lizards;Austin;Comparative Biochemistry and Physiology Part A: Physiology,1994

3. Hemiplasy: a new term in the lexicon of phylogenetics;Avise;Systematic Biology,2008

4. Phylogenetic comparative methods on phylogenetic networks with reticulations;Bastide;Systematic Biology,2018

5. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis;Bouckaert;PLOS Computational Biology,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3