Affiliation:
1. University of Bordeaux, INSERM U1212, CNRS UMR 5320, ARNA Laboratory, Bordeaux, France
Abstract
Post-transcriptional regulation plays important roles to fine-tune gene expression in bacteria. In particular, regulation of type I toxin-antitoxin (TA) systems is achieved through sophisticated mechanisms involving toxin mRNA folding. Here, we set up a genetic approach to decipher the molecular underpinnings behind the regulation of a type I TA in Helicobacter pylori. We used the lethality induced by chromosomal inactivation of the antitoxin to select mutations that suppress toxicity. We found that single point mutations are sufficient to allow cell survival. Mutations located either in the 5’ untranslated region or within the open reading frame of the toxin hamper its translation by stabilizing stem-loop structures that sequester the Shine-Dalgarno sequence. We propose that these short hairpins correspond to metastable structures that are transiently formed during transcription to avoid premature toxin expression. This work uncovers the co-transcriptional inhibition of translation as an additional layer of TA regulation in bacteria.
Funder
Agence Nationale de la Recherche
H2020 Marie Skłodowska-Curie Actions
Institut National de la Santé et de la Recherche Médicale
Centre National de la Recherche Scientifique
Publisher
eLife Sciences Publications, Ltd
Subject
General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献