Cell-intrinsic mechanisms of temperature compensation in a grasshopper sensory receptor neuron

Author:

Roemschied Frederic A12,Eberhard Monika JB3,Schleimer Jan-Hendrik12,Ronacher Bernhard23,Schreiber Susanne12

Affiliation:

1. Institute of Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany

2. Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany

3. Behavioral Physiology Group, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany

Abstract

Changes in temperature affect biochemical reaction rates and, consequently, neural processing. The nervous systems of poikilothermic animals must have evolved mechanisms enabling them to retain their functionality under varying temperatures. Auditory receptor neurons of grasshoppers respond to sound in a surprisingly temperature-compensated manner: firing rates depend moderately on temperature, with average Q10 values around 1.5. Analysis of conductance-based neuron models reveals that temperature compensation of spike generation can be achieved solely relying on cell-intrinsic processes and despite a strong dependence of ion conductances on temperature. Remarkably, this type of temperature compensation need not come at an additional metabolic cost of spike generation. Firing rate-based information transfer is likely to increase with temperature and we derive predictions for an optimal temperature dependence of the tympanal transduction process fostering temperature compensation. The example of auditory receptor neurons demonstrates how neurons may exploit single-cell mechanisms to cope with multiple constraints in parallel.

Funder

Federal Ministry of Education and Research (BMBF)

Deutsche Forschungsgemeinschaft (DFG)

Bundesministerium für Bildung und Forschung

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference64 articles.

1. Effects of temperature on identified central neurons that control jumping in the grasshopper;Abrams;The Journal of Neuroscience: the Official Journal of the Society for Neuroscience,1982

2. Energy-efficient action potentials in hippocampal mossy fibers;Alle;Science,2009

3. An energy budget for signaling in the grey matter of the brain;Attwell;Journal of Cerebral Blood Flow and Metabolism: official Journal of the International Society of Cerebral Blood Flow and Metabolism,2001

4. Single neuron dynamics. Ph.D. thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I;Benda,2002

5. Temperature dependence of electrophysiological responses of lepidopteran antennae;Bestmann;Z Naturforsch, C: Biosci,1989

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3