BMP9 and BMP10 coordinate liver cellular crosstalk to maintain liver health

Author:

Zhao Dianyuan1,Huang Ziwei12,Li Xiaoyu12,Wang Huan1,Hou Qingwei13,Wang Yuyao13,Yan Fang1,Yang Wenting1,Liu Di1,Yi Shaoqiong1,Han Chunguang1,Hao Yanan1,Tang Li123ORCID

Affiliation:

1. State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics

2. Department of Immunology, School of Basic Medical Sciences, Anhui Medical University

3. School of Basic Medicine, Qingdao University

Abstract

The liver is the largest solid organ in the body and is primarily composed of HCs, ECs, KCs, and HSCs, which spatially interact and cooperate with each other to maintain liver homeostasis. However, the complexity and molecular mechanisms underlying the crosstalk between these different cell types remain to be revealed. Here, we generated mice with conditional deletion of Bmp9/10 in different liver cell types and demonstrated that HSCs were the major source of BMP9 and BMP10 in the liver. Using transgenic ALK1 (receptor for BMP9/10) reporter mice, we found that ALK1 is expressed on KCs and ECs other than HCs and HSCs. KCs from Bmp9/10 HSC-KO (conditional deletion of Bmp9/10 from HSCs) mice lost their signature gene expression, such as ID1/3, CLEC4F, VSIG4 and CLEC2, and were replaced by monocyte-derived macrophages. ECs from Bmp9/10 HSC-KO mice also lost their identity and were transdifferentiated into continuous ECs, ultimately leading to collagen IV deposition and liver fibrosis. Hepatic ECs express several angiocrine factors, such as BMP2, BMP6, Wnt2 and Rspo3, to regulate liver iron metabolism and metabolic zonation. We found that these angiocrine factors were significantly decreased in ECs from Bmp9/10 HSC-KO mice, which further resulted in liver iron overload and disruption of HC zonation. In summary, we demonstrated that HSCs play a central role in mediating liver cell‒cell crosstalk via the production of BMP9/10 to maintain liver health.

Publisher

eLife Sciences Publications, Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3