Deconstructing Complexity: A Computational Topology Approach to Trajectory Inference in the Human Thymus with tviblindi

Author:

Stuchly Jan1,Novak David123,Brdickova Nadezda1,Hadlova Petra1,Iksi Ahmad4,Kuzilkova Daniela1,Svaton Michael1,Saad George Alehandro4,Engel Pablo5,Luche Herve4,Sousa Ana E.6,Almeida Afonso R. M.6,Kalina Tomas1

Affiliation:

1. Childhood Leukaemia Investigation Prague (CLIP), Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol

2. Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research

3. Department of Applied Mathematics, Computer Science and Statistics, Ghent University

4. Centre d’Immunophénomique - CIPHE (PHENOMIN), Aix Marseille Université (UMS3367)

5. Department of Biomedical Sciences, Medical School, University of Barcelona

6. Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa

Abstract

Understanding complex, organ-level single-cell datasets represents a formidable interdisciplinary challenge. This study aims to describe developmental trajectories of thymocytes and mature T cells. We developed tviblindi , a trajectory inference algorithm that integrates several autonomous modules - pseudotime inference, random walk simulations, real-time topological classification using persistent homology, and autoencoder-based 2D visualization using the vaevictis algorithm. This integration facilitates interactive exploration of developmental trajectories, revealing not only the canonical CD4 and CD8 development but also offering insights into checkpoints such as TCRβ selection and positive/negative selection. Furthermore, it allows us to thoroughly characterize thymic regulatory T cells, tracing their development from the negative selection stage to mature thymic regulatory T cells with an extensive proliferation history and an immunophenotype of activated and recirculating cells. tviblindi is a versatile and generic approach suitable for any mass cytometry or single-cell RNA-seq dataset, equipping biologists with an effective tool for interpreting complex data.

Publisher

eLife Sciences Publications, Ltd

Reference89 articles.

1. Single-Cell Trajectory Detection Uncovers Progression and Regulatory Coordination in Human B Cell Development;Cell,2014

2. A comparison of single-cell trajectory inference methods;Nature Biotechnology 2019 37:5,2019

3. The single-cell transcriptional landscape of mammalian organogenesis;Nature 2019 566:7745,2019

4. Single-cell trajectories reconstruction, exploration and mapping of omics data with STREAM;Nature Communications 2019 10:1,2019

5. PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells;Genome Biol,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3