Neuropilin-1 controls vascular permeability through juxtacrine regulation of endothelial adherens junctions

Author:

Pal SagnikORCID,Su Yangyang,Claesson-Welsh LenaORCID,Richards MarkORCID

Abstract

Neuropilin-1 (NRP1) regulates endothelial cell (EC) biology through modulating vascular endothelial growth factor receptor 2 (VEGFR2) signalling by presenting VEGFA. How NRP1 impacts VEGFA-mediated vascular hyperpermeability however is unresolved, being described as having a positive or passive function. Using EC-specific Nrp1 knock-out mice, we discover that EC-expressed NRP1 exerts an organotypic role. In ear skin, VEGFA/VEGFR2-mediated vascular leakage increased following EC NRP1 knock-out, showing that NRP1 negatively regulates VEGFR2 signalling. Conversely, in back skin and trachea, EC NRP1 knock-out decreased vascular leakage. Accordingly, VE-cadherin phosphorylation increased in the ear skin but was suppressed in back skin of Nrp1 iECKO mice. NRP1 has been shown to have the ability to act in a juxtacrine manner. Importantly, NRP1 was more abundant in perivascular cells of the ear skin than back skin. Global NRP1 knock-out suppressed VEGFA-induced vascular leakage in the ear skin, implicating perivascular NRP1 as a juxtacrine co-receptor of VEGFA in this compartment. Altogether, we demonstrate that perivascular NRP1 is an active participant in EC VEGFA/VEGFR2 signalling and acts as an organotypic modifier of EC biology.

Publisher

eLife Sciences Publications, Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3