Dynamic organization of visual cortical networks revealed by machine learning applied to massive spiking datasets

Author:

Graber Colin1,Vlasov Yurii1ORCID,Schwing Alexander1

Affiliation:

1. University of Illinois Urbana Champaign, Department of Electrical and Computer Engineering

Abstract

Complex cognitive functions in a mammalian brain are distributed across many anatomically and functionally distinct areas and rely on highly dynamic routing of neural activity across the network. While modern electrophysiology methods enable recording of spiking activity from increasingly large neuronal populations at a cellular level, development of probabilistic methods to extract these dynamic inter-area interactions is lagging. Here, we introduce an unsupervised machine learning model that infers dynamic connectivity across the recorded neuronal population from a synchrony of their spiking activity. As opposed to traditional population decoding models that reveal dynamics of the whole population, the model produces cellular-level cell-type specific dynamic functional interactions that are otherwise omitted from analysis. The model is evaluated on ground truth synthetic data and compared to alternative methods to ensure quality and quantification of model predictions. Our strategy incorporates two sequential stages – extraction of static connectivity structure of the network followed by inference of temporal changes of the connection strength. This two-stage architecture enables detailed statistical criteria to be developed to evaluate confidence of the model predictions in comparison with traditional descriptive statistical methods. We applied the model to analyze large-scale in-vivo recordings of spiking activity across mammalian visual cortices. The model enables the discovery of cellular-level dynamic connectivity patterns in local and long-range circuits across the whole visual cortex with temporally varying strength of feedforward and feedback drives during sensory stimulation. Our approach provides a conceptual link between slow brain-wide network dynamics studied with neuroimaging and fast cellular-level dynamics enabled by modern electrophysiology that may help to uncover often overlooked dimensions of the brain code.

Publisher

eLife Sciences Publications, Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3