Mechanical force induces mitochondrial fission

Author:

Helle Sebastian Carsten Johannes1,Feng Qian1,Aebersold Mathias J2,Hirt Luca2,Grüter Raphael R2,Vahid Afshin3ORCID,Sirianni Andrea4,Mostowy Serge4,Snedeker Jess G56,Šarić Anđela7ORCID,Idema Timon3ORCID,Zambelli Tomaso2,Kornmann Benoît1ORCID

Affiliation:

1. Institute of Biochemistry, ETH Zurich, Zurich, Switzerland

2. Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland

3. Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands

4. Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom

5. Balgrist University Hospital, University of Zurich, Zurich, Switzerland

6. Institute for Biomechanics, ETH Zurich, Zurich, Switzerland

7. Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, United Kingdom

Abstract

Eukaryotic cells are densely packed with macromolecular complexes and intertwining organelles, continually transported and reshaped. Intriguingly, organelles avoid clashing and entangling with each other in such limited space. Mitochondria form extensive networks constantly remodeled by fission and fusion. Here, we show that mitochondrial fission is triggered by mechanical forces. Mechano-stimulation of mitochondria – via encounter with motile intracellular pathogens, via external pressure applied by an atomic force microscope, or via cell migration across uneven microsurfaces – results in the recruitment of the mitochondrial fission machinery, and subsequent division. We propose that MFF, owing to affinity for narrow mitochondria, acts as a membrane-bound force sensor to recruit the fission machinery to mechanically strained sites. Thus, mitochondria adapt to the environment by sensing and responding to biomechanical cues. Our findings that mechanical triggers can be coupled to biochemical responses in membrane dynamics may explain how organelles orderly cohabit in the crowded cytoplasm.

Funder

European Commission

Eidgenössische Technische Hochschule Zürich

European Molecular Biology Organization

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Lister Institute of Preventive Medicine

Wellcome

Royal Society

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference51 articles.

1. Thermodynamics and mechanics of membrane curvature generation and sensing by proteins and lipids;Baumgart;Annual Review of Physical Chemistry,2011

2. Atomic force microscope;Binnig;Physical Review Letters,1986

3. Patch-based nonlocal functional for denoising fluorescence microscopy image sequences;Boulanger;IEEE Transactions on Medical Imaging,2010

4. Multiplex genome engineering using CRISPR/Cas systems;Cong;Science,2013

5. Formation and interaction of membrane tubes;Derényi;Physical Review Letters,2002

Cited by 136 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3