The rosetteless gene controls development in the choanoflagellate S. rosetta

Author:

Levin Tera C1ORCID,Greaney Allison J1,Wetzel Laura1,King Nicole1

Affiliation:

1. Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States

Abstract

The origin of animal multicellularity may be reconstructed by comparing animals with one of their closest living relatives, the choanoflagellate Salpingoeca rosetta. Just as animals develop from a single cell–the zygote–multicellular rosettes of S. rosetta develop from a founding cell. To investigate rosette development, we established forward genetics in S. rosetta. We find that the rosette defect of one mutant, named Rosetteless, maps to a predicted C-type lectin, a class of signaling and adhesion genes required for the development and innate immunity in animals. Rosetteless protein is essential for rosette development and forms an extracellular layer that coats and connects the basal poles of each cell in rosettes. This study provides the first link between genotype and phenotype in choanoflagellates and raises the possibility that a protein with C-type lectin-like domains regulated development in the last common ancestor of choanoflagellates and animals.

Funder

Howard Hughes Medical Institute

National Institutes of Health

Canadian Institute for Advanced Research

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference61 articles.

1. The premetazoan ancestry of cadherins;Abedin;Science,2008

2. Are we there yet? Tracking the development of new model systems;Abzhanov;Trends in Genetics,2008

3. A bacterial sulfonolipid triggers multicellular development in the closest living relatives of animals;Alegado;eLife,2012

4. Algoriphagus machipongonensis sp. nov., co-isolated with a colonial choanoflagellate;Alegado;International Journal of Systematic and Evolutionary Microbiology,2013

5. Bacterial influences on animal origins;Alegado;Cold Spring Harbor Perspectives in Biology,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3