A bacterial riboswitch class for the thiamin precursor HMP-PP employs a terminator-embedded aptamer

Author:

Atilho Ruben M1,Mirihana Arachchilage Gayan2,Greenlee Etienne B3,Knecht Kirsten M1,Breaker Ronald R13ORCID

Affiliation:

1. Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States

2. Howard Hughes Medical Institute, Yale University, New Haven, United States

3. Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States

Abstract

We recently implemented a bioinformatics pipeline that can uncover novel, but rare, riboswitch candidates as well as other noncoding RNA structures in bacteria. A prominent candidate revealed by our initial search efforts was called the ‘thiS motif’ because of its frequent association with a gene coding for the ThiS protein, which delivers sulfur to form the thiazole moiety of the thiamin precursor HET-P. In the current report, we describe biochemical and genetic data demonstrating that thiS motif RNAs function as sensors of the thiamin precursor HMP-PP, which is fused with HET-P ultimately to form the final active coenzyme thiamin pyrophosphate (TPP). HMP-PP riboswitches exhibit a distinctive architecture wherein an unusually small ligand-sensing aptamer is almost entirely embedded within an otherwise classic intrinsic transcription terminator stem. This arrangement yields remarkably compact genetic switches that bacteria use to tune the levels of thiamin precursors during the biosynthesis of this universally distributed coenzyme.

Funder

National Institutes of Health

National Science Foundation

Howard Hughes Medical Institute

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3