Genomic basis for drought resistance in European beech forests threatened by climate change

Author:

Pfenninger Markus123ORCID,Reuss Friederike1,Kiebler Angelika1,Schönnenbeck Philipp14,Caliendo Cosima14,Gerber Susanne4,Cocchiararo Berardino35,Reuter Sabrina6,Blüthgen Nico6,Mody Karsten67,Mishra Bagdevi8,Bálint Miklós3910,Thines Marco3811,Feldmeyer Barbara1

Affiliation:

1. Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany

2. Institute for Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany

3. LOEWE Centre for Translational Biodiversity Genomics, Frankfurt am Main, Germany

4. Institute of Human Genetics, University Medical Center, Johannes Gutenberg University, Mainz, Germany

5. Conservation Genetics Section, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany

6. Ecological Networks lab, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany

7. Department of Applied Ecology, Hochschule Geisenheim University, Geisenheim, Germany

8. Biological Archives, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany

9. Functional Environmental Genomics, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany

10. Agricultural Sciences, Nutritional Sciences, and Environmental Management, Universität Giessen, Giessen, Germany

11. Institute for Ecology, Evolution and Diversity, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany

Abstract

In the course of global climate change, Central Europe is experiencing more frequent and prolonged periods of drought. The drought years 2018 and 2019 affected European beeches (Fagus sylvatica L.) differently: even in the same stand, drought-damaged trees neighboured healthy trees, suggesting that the genotype rather than the environment was responsible for this conspicuous pattern. We used this natural experiment to study the genomic basis of drought resistance with Pool-GWAS. Contrasting the extreme phenotypes identified 106 significantly associated single-nucleotide polymorphisms (SNPs) throughout the genome. Most annotated genes with associated SNPs (>70%) were previously implicated in the drought reaction of plants. Non-synonymous substitutions led either to a functional amino acid exchange or premature termination. An SNP assay with 70 loci allowed predicting drought phenotype in 98.6% of a validation sample of 92 trees. Drought resistance in European beech is a moderately polygenic trait that should respond well to natural selection, selective management, and breeding.

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference63 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3