Real-time, low-latency closed-loop feedback using markerless posture tracking

Author:

Kane Gary A1ORCID,Lopes Gonçalo2ORCID,Saunders Jonny L3ORCID,Mathis Alexander14ORCID,Mathis Mackenzie W14ORCID

Affiliation:

1. The Rowland Institute at Harvard, Harvard University, Cambridge, United States

2. NeuroGEARS Ltd, London, United Kingdom

3. Institute of Neuroscience, Department of Psychology, University of Oregon, Eugene, United States

4. Center for Neuroprosthetics, Center for Intelligent Systems, & Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland

Abstract

The ability to control a behavioral task or stimulate neural activity based on animal behavior in real-time is an important tool for experimental neuroscientists. Ideally, such tools are noninvasive, low-latency, and provide interfaces to trigger external hardware based on posture. Recent advances in pose estimation with deep learning allows researchers to train deep neural networks to accurately quantify a wide variety of animal behaviors. Here, we provide a new <monospace>DeepLabCut-Live!</monospace> package that achieves low-latency real-time pose estimation (within 15 ms, >100 FPS), with an additional forward-prediction module that achieves zero-latency feedback, and a dynamic-cropping mode that allows for higher inference speeds. We also provide three options for using this tool with ease: (1) a stand-alone GUI (called <monospace>DLC-Live! GUI</monospace>), and integration into (2) <monospace>Bonsai,</monospace> and (3) <monospace>AutoPilot</monospace>. Lastly, we benchmarked performance on a wide range of systems so that experimentalists can easily decide what hardware is required for their needs.

Funder

Chan Zuckerberg Initiative

National Science Foundation

Rowland Institute at Harvard

Harvard Brain Science Initiative

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference54 articles.

1. Tensorflow: a system for large-scale machine learning;Abadi,2016

2. Python-blosc;Alted,2020

3. Posetrack: a benchmark for human pose estimation and tracking;Andriluka,2018

4. Automated markerless pose estimation in freely moving macaques with OpenMonkeyStudio;Bala;Nature Communications,2020

5. Blazeface: sub-millisecond neural face detection on mobile gpus;Bazarevsky,2019

Cited by 107 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3