Structural basis for the reaction cycle of DASS dicarboxylate transporters

Author:

Sauer David B12ORCID,Trebesch Noah3ORCID,Marden Jennifer J12,Cocco Nicolette12,Song Jinmei12,Koide Akiko45,Koide Shohei456,Tajkhorshid Emad3ORCID,Wang Da-Neng12ORCID

Affiliation:

1. Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, United States

2. Department of Cell Biology, New York University School of Medicine, New York, United States

3. NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, United States

4. Perlmutter Cancer Center, New York University School of Medicine, New York, United States

5. Department of Medicine, New York University School of Medicine, New York, United States

6. Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States

Abstract

Citrate, α-ketoglutarate and succinate are TCA cycle intermediates that also play essential roles in metabolic signaling and cellular regulation. These di- and tricarboxylates are imported into the cell by the divalent anion sodium symporter (DASS) family of plasma membrane transporters, which contains both cotransporters and exchangers. While DASS proteins transport substrates via an elevator mechanism, to date structures are only available for a single DASS cotransporter protein in a substrate-bound, inward-facing state. We report multiple cryo-EM and X-ray structures in four different states, including three hitherto unseen states, along with molecular dynamics simulations, of both a cotransporter and an exchanger. Comparison of these outward- and inward-facing structures reveal how the transport domain translates and rotates within the framework of the scaffold domain through the transport cycle. Additionally, we propose that DASS transporters ensure substrate coupling by a charge-compensation mechanism, and by structural changes upon substrate release.

Funder

National Institutes of Health

TESS Research Foundation

American Epilepsy Society

American Cancer Society

Department of Defense

National Science Foundation

XSEDE

Blue Waters

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3