Patched 1 reduces the accessibility of cholesterol in the outer leaflet of membranes

Author:

Kinnebrew Maia1ORCID,Luchetti Giovanni12,Sircar Ria1,Frigui Sara1,Viti Lucrezia Vittoria3,Naito Tomoki4ORCID,Beckert Francis1,Saheki Yasunori4ORCID,Siebold Christian3ORCID,Radhakrishnan Arun5ORCID,Rohatgi Rajat1ORCID

Affiliation:

1. Department of Biochemistry and Medicine, Stanford University School of Medicine

2. Department of Physiological Chemistry, Genentech

3. Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford

4. Lee Kong Chian School of Medicine, Nanyang Technological University

5. Department of Molecular Genetics, University of Texas Southwestern Medical Center

Abstract

A long-standing mystery in vertebrate Hedgehog signaling is how Patched 1 (PTCH1), the receptor for Hedgehog ligands, inhibits the activity of Smoothened, the protein that transmits the signal across the membrane. We previously proposed (Kinnebrew et al., 2019) that PTCH1 inhibits Smoothened by depleting accessible cholesterol from the ciliary membrane. Using a new imaging-based assay to directly measure the transport activity of PTCH1, we find that PTCH1 depletes accessible cholesterol from the outer leaflet of the plasma membrane. This transport activity is terminated by binding of Hedgehog ligands to PTCH1 or by dissipation of the transmembrane potassium gradient. These results point to the unexpected model that PTCH1 moves cholesterol from the outer to the inner leaflet of the membrane in exchange for potassium ion export in the opposite direction. Our study provides a plausible solution for how PTCH1 inhibits SMO by changing the organization of cholesterol in membranes and establishes a general framework for studying how proteins change cholesterol accessibility to regulate membrane-dependent processes in cells.

Funder

Cancer Research UK

European Research Council

National Institutes of Health

Welch Foundation

Leducq Foundation

Ministry of Education, Singapore

National Science Foundation

Ford Foundation

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3