Affiliation:
1. Department of Microbiology, University of Texas Southwestern Medical Center
2. McDermott Center Bioinformatics Lab, University of Texas Southwestern Medical Center
3. Howard Hughes Medical Institute, and Department of Molecular and Cell Biology, University of California, Berkeley
Abstract
Animals have evolved unique repertoires of innate immune genes and pathways that provide their first line of defense against pathogens. To reconstruct the ancestry of animal innate immunity, we have developed the choanoflagellate Monosiga brevicollis, one of the closest living relatives of animals, as a model for studying mechanisms underlying pathogen recognition and immune response. We found that M. brevicollis is killed by exposure to Pseudomonas aeruginosa bacteria. Moreover, M. brevicollis expresses STING, which, in animals, activates innate immune pathways in response to cyclic dinucleotides during pathogen sensing. M. brevicollis STING increases the susceptibility of M. brevicollis to P. aeruginosa-induced cell death and is required for responding to the cyclic dinucleotide 2’3’ cGAMP. Furthermore, similar to animals, autophagic signaling in M. brevicollis is induced by 2’3’ cGAMP in a STING-dependent manner. This study provides evidence for a pre-animal role for STING in antibacterial immunity and establishes M. brevicollis as a model system for the study of immune responses.
Funder
Howard Hughes Medical Institute
Pew Charitable Trusts
Burroughs Wellcome Fund
National Cancer Institute
Publisher
eLife Sciences Publications, Ltd
Subject
General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献