The single-cell chromatin accessibility landscape in mouse perinatal testis development

Author:

Suen Hoi Ching1ORCID,Rao Shitao23,Luk Alfred Chun Shui1,Zhang Ruoyu3,Yang Lele4,Qi Huayu4,So Hon Cheong3ORCID,Hobbs Robin M5,Lee Tin-lap1ORCID,Liao Jinyue16ORCID

Affiliation:

1. Developmental and Regenerative Biology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin

2. School of Medical Technology and Engineering, Fujian Medical University

3. Cancer Biology and Experimental Therapeutics Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin

4. Guangzhou Regenerative Medicine and Health Bioland Laboratory, Guangzhou Institutes of Biomedicine and Health

5. Germline Stem Cell Biology Laboratory, Centre for Reproductive Health, Hudson Institute of Medical Research

6. Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories

Abstract

Spermatogenesis depends on an orchestrated series of developing events in germ cells and full maturation of the somatic microenvironment. To date, the majority of efforts to study cellular heterogeneity in testis has been focused on single-cell gene expression rather than the chromatin landscape shaping gene expression. To advance our understanding of the regulatory programs underlying testicular cell types, we analyzed single-cell chromatin accessibility profiles in more than 25,000 cells from mouse developing testis. We showed that single-cell sequencing assay for transposase-accessible chromatin (scATAC-Seq) allowed us to deconvolve distinct cell populations and identify cis-regulatory elements (CREs) underlying cell-type specification. We identified sets of transcription factors associated with cell type-specific accessibility, revealing novel regulators of cell fate specification and maintenance. Pseudotime reconstruction revealed detailed regulatory dynamics coordinating the sequential developmental progressions of germ cells and somatic cells. This high-resolution dataset also unveiled previously unreported subpopulations within both the Sertoli and Leydig cell groups. Further, we defined candidate target cell types and genes of several genome-wide association study (GWAS) signals, including those associated with testosterone levels and coronary artery disease. Collectively, our data provide a blueprint of the ‘regulon’ of the mouse male germline and supporting somatic cells.

Funder

Chinese University of Hong Kong

University Grants Committee

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3