Fluid extraction from the left-right organizer uncovers mechanical properties needed for symmetry breaking

Author:

Sampaio Pedro1,Pestana Sara1,Bota Catarina1,Guerrero Adán2,Telley Ivo A3ORCID,Smith David45,Lopes Susana Santos1ORCID

Affiliation:

1. CEDOC, Chronic Diseases Research Centre, NOVA Medical School. Faculdade de8 Ciências Médicas, Universidade Nova de Lisboa

2. Laboratorio Nacional de Microscopía Avanzada. Departamento de Genética del Desarrollo y Fisiología Molecular. Instituto de Biotecnología. Universidad Nacional Autónoma de México (UNAM)

3. Instituto Gulbenkian de Ciência, Fundação Calouste Gulbenkian

4. School of Mathematics, University of Birmingham

5. Institute for Metabolism and Systems Research, University of Birmingham

Abstract

Humans and other vertebrates define body axis left-right asymmetry in the early stages of embryo development. The mechanism behind left-right establishment is not fully understood. Symmetry breaking occurs in a dedicated organ called the left-right organizer (LRO) and involves motile cilia generating fluid-flow therein. However, it has been a matter of debate whether the process of symmetry breaking relies on a chemosensory or a mechanosensory mechanism (Shinohara et al., 2012). Novel tailored manipulations for LRO fluid extraction in living zebrafish embryos allowed us to pinpoint a physiological developmental period for breaking left-right symmetry during development. The shortest critical time-window was narrowed to one hour and characterized by a mild counterclockwise flow. The experimental challenge consisted in emptying the LRO of its fluid, abrogating simultaneously flow force and chemical determinants. Our findings revealed an unprecedented recovery capacity of the embryo to re-fil and re-circulate new LRO fluid. The embryos that later developed laterality problems were found to be those that had lower anterior angular velocity and thus less anterior-posterior heterogeneity. Next, aiming to test the presence of any secreted determinant, we replaced the extracted LRO fluid by a physiological buffer. Despite some transitory flow homogenization, laterality defects were absent unless viscosity was altered, demonstrating that symmetry breaking does not depend on the nature of the fluid content but is rather sensitive to fluid mechanics. Altogether, we conclude that the zebrafish LRO is more sensitive to fluid dynamics for symmetry breaking.

Funder

Fundação para a Ciência e a Tecnologia

Chan Zuckerberg Initiative LLC

Alan Turing Institute

Engineering and Physical Sciences Research Council

NOVA Medical School

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3