Beyond A and B Compartments: how major nuclear locales define nuclear genome organization and function

Author:

Gholamalamdari Omid1ORCID,van Schaik Tom2,Wang Yuchuan3,Kumar Pradeep1,Zhang Liguo1,Zhang Yang3,Hernandez Gonzalez Gabriela A1,Vouzas Athanasios E4,Zhao Peiyao A4,Gilbert David M4ORCID,Ma Jian3ORCID,van Steensel Bas2ORCID,Belmont Andrew S156ORCID

Affiliation:

1. Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign

2. Division of Gene Regulation and Oncode Institute, Netherlands Cancer Institute

3. Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University

4. San Diego Biomedical Research Institute

5. Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign

6. Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

Abstract

Models of nuclear genome organization often propose a binary division into active versus inactive compartments, yet they overlook nuclear bodies. Here we integrated analysis of sequencing and image-based data to compare genome organization in four human cell types relative to three different nuclear locales: the nuclear lamina, nuclear speckles, and nucleoli. Whereas gene expression correlates mostly with nuclear speckle proximity, DNA replication timing correlates with proximity to multiple nuclear locales. Speckle attachment regions emerge as DNA replication initiation zones whose replication timing and gene composition vary with their attachment frequency. Most facultative LADs retain a partially repressed state as iLADs, despite their positioning in the nuclear interior. Knock out of two lamina proteins, Lamin A and LBR, causes a shift of H3K9me3-enriched LADs from lamina to nucleolus, and a reciprocal relocation of H3K27me3-enriched partially repressed iLADs from nucleolus to lamina. Thus, these partially repressed iLADs appear to compete with LADs for nuclear lamina attachment with consequences for replication timing. The nuclear organization in adherent cells is polarized with nuclear bodies and genomic regions segregating both radially and relative to the equatorial plane. Together, our results underscore the importance of considering genome organization relative to nuclear locales for a more complete understanding of the spatial and functional organization of the human genome.

Publisher

eLife Sciences Publications, Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3