Impact of Maximal Overexpression of a Non-toxic Protein on Yeast Cell Physiology

Author:

Fujita Yuri1,Namba Shotaro1,Moriya Hisao2ORCID

Affiliation:

1. Graduate School of Environmental, Life, Natural Science and Technology, Okayama University

2. Faculty of Environmental, Life, Natural Science and Technology, Okayama University

Abstract

While it is recognized that excess expression of non-essential proteins burdens cell growth, the physiological state of cells under such stress is largely unknown. This is because it is challenging to distinguish between adverse effects arising from the properties of the expressed excess protein (cytotoxicity) and those caused solely by protein overexpression. In this study, we attempted to identify the model protein with the lowest cytotoxicity in yeast cells by introducing a new neutrality index. We found that a non-fluorescent fluorescent protein (mox-YG) and an inactive glycolytic enzyme (Gpm1-CCmut) showed the lowest cytotoxicity. These proteins can be expressed at levels exceeding 40% of total protein while maintaining yeast growth. The transcriptome of cells expressing mox-YG to the limit indicated that the cells were in a nitrogen source requirement state. Proteome analysis revealed increased mitochondrial function and decreased ribosome abundance, like the inactivated state of the TORC1 pathway. The decrease in ribosome abundance was presumably due to defective nucleolus formation, partially rescued by a mutation in the nuclear exosome. These findings suggest that massive overexpression of excess protein, termed protein burden, causes nitrogen source starvation, a metabolic shift toward more energy-efficient respiration, and a ribosomal biosynthesis defect due to an imbalance between ribosomal protein and rRNA synthesis in the nucleolus.

Publisher

eLife Sciences Publications, Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3