Atomistic Tuning of the GeoCas9 Recognition Lobe Modulates Allosteric Motions and Guide RNA Interactions

Author:

Belato Helen B1,Knight Alexa L1,D’Ordine Alexandra M1,Fan Zhiqiang2,Luo Jinping2,Jogl Gerwald1,Lisi George P1ORCID

Affiliation:

1. Department of Molecular Biology

2. Brown University Mouse Transgenic & Gene Targeting Facility

Abstract

The intuitive manipulation of specific amino acids to alter the activity or specificity of CRISPR-Cas9 has been a topic of great interest. As a large multi-domain RNA-guided endonuclease, the intricate molecular crosstalk within the Cas9 protein hinges on its conformational dynamics, but a comprehensive understanding of the extent and timescale of the motions that drive its allosteric function and association with nucleic acids remains elusive. Here, we investigated the structure and multi-timescale molecular motions of the recognition (Rec) lobe of Geo Cas9, a thermophilic Cas9 from Geobacillus stearothermophilus. Our results provide new atomic details about the Geo Rec subdomains ( Geo Rec1, Geo Rec2) and the full-length domain in solution. Two single-point mutants, K267E and R332A, enhanced and redistributed micro-millisecond flexibility throughout Geo Rec, and NMR studies of the interaction between Geo Rec and its guide RNA showed that mutations reduced this affinity and the stability of the ribonucleoprotein complex. Despite measured biophysical differences due to the mutations, DNA cleavage assays reveal only modest functional differences in on-target activity, and similar specificity. These data highlight how guide RNA interactions can be tuned in the absence of major functional losses, but also raise questions about the underlying mechanism of Geo Cas9, since analogous single-point mutations have significantly impacted on- and off-target DNA editing in mesophilic S. pyogenes Cas9. A K267E/R332A double mutant did modestly enhance Geo Cas9 specificity, highlighting the robust evolutionary tolerance of Cas9 and species-dependent complexity. Ultimately, this work provides an avenue by which to modulate the structure, motion, and nucleic acid interactions at the level of the Rec lobe of Geo Cas9, setting the stage for future studies of Geo Cas9 variants and their effect on its allosteric mechanism.

Publisher

eLife Sciences Publications, Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3