Remote automated delivery of mechanical stimuli coupled to brain recordings in behaving mice

Author:

Burdge Justin123,Jhumka Anissa123,Ogundare Simon123,Baer Nicholas123,Fulton Sasha123,Bistis Brittany123,Foster William123,Toussaint Andre123,Li Miao4,Morizawa Yosuke M4,Yadessa Leah123,Khan Ashar123,Delinois Abednego123,Mayiseni Wadzanayi123,Loran Noah123,Yang Guang4,Abdus-Saboor Ishmail123

Affiliation:

1. Zuckerman Mind Brain Behavior Institute, Columbia University in the City of New York

2. Department of Biological Sciences, Columbia University in the City of New York

3. Howard Hughes Medical Institute

4. Department of Anesthesiology, Columbia University in the City of New York

Abstract

The canonical framework for testing pain and mechanical sensitivity in rodents is manual delivery of stimuli to the paw. However, this approach can produce variability in results, requires significant training, and is ergonomically unfavorable to the experimenter. To circumvent limitations in manual delivery of stimuli, we have created a device called the ARM ( A utomated R eproducible M echano-stimulator). Built using a series of linear stages, cameras, and stimulus holders, the ARM is more accurate at hitting the desired target, delivers stimuli faster, and decreases variability in delivery of von Frey hair filaments. We demonstrate that the ARM can be combined with traditional measurements of pain behavior and automated machine-learning based pipelines. Importantly, the ARM enables remote testing of mice with experimenters outside the testing room. Using remote testing, we found that mice appeared to habituate more quickly when an experimenter was not present and experimenter presence leads to significant sex-dependent differences in withdrawal behavior. Lastly, to demonstrate the utility of the ARM for neural circuit dissection of pain mechanisms, we combined the ARM with cellular-resolved microendoscopy in the amygdala, linking stimulus, behavior, and brain activity of amygdalar neurons that encode negative pain states. Taken together, the ARM improves speed, accuracy, and robustness of mechanical pain assays and can be combined with automated pain detection systems and brain recordings to map pain sensation and affect.

Publisher

eLife Sciences Publications, Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3