Affiliation:
1. Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
2. Key Laboratory of Human Disease Comparative Medicine, NHFPC, Institute of Laboratory Animal Science,Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College
Abstract
Plastin 3 (PLS3), a protein involved in formation of filamentous actin (F-actin) bundles, is important in human bone health. Recent studies identify PLS3 as a novel bone regulator and PLS3 mutations can lead to a rare monogenic early-onset osteoporosis. However, the mechanism of PLS3 mutation leading to osteoporosis is unknown, and its effective treatment strategies have not been established. Here, we have constructed a novel rat model with clinically relevant hemizygous E10-16del mutation in PLS3 (PLS3E10-16del/0) that recapitulates the osteoporotic phenotypes with obviously thinner cortical thickness, significant decreases in yield load, maximum load, and breaking load of femora at 3, 6, 9 months old compared to wild-type rats. Histomorphometric analysis indicates a significantly lower mineral apposition rate in PLS3E10-16del/0 rats. Treatment with alendronate (1.0 µg/kg/day) or teriparatide (40 µg/kg five times weekly) for 8 weeks significantly improves bone mass and bone microarchitecture, and bone strength is significantly increased after teriparatide treatment (p<0.05). Thus, our results indicate that PLS3 plays an important role in the regulation of bone microstructure and bone strength, and we provide a novel animal model for the study of X-linked early-onset osteoporosis. Alendronate and teriparatide treatment could be a potential treatment for early-onset osteoporosis induced by PLS3 mutation.
Funder
National Key Research and Development Program of China
Chinese Academy of Medical Sciences Initiative for Innovative Medicine
National Natural Science Foundation of China
Beijing Natural Science Foundation
Fundamental Research Funds for the Central Universities
Publisher
eLife Sciences Publications, Ltd
Subject
General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献