Quantifying antibody kinetics and RNA detection during early-phase SARS-CoV-2 infection by time since symptom onset

Author:

Borremans Benny123ORCID,Gamble Amandine1,Prager KC1ORCID,Helman Sarah K1,McClain Abby M4ORCID,Cox Caitlin1,Savage Van15,Lloyd-Smith James O1ORCID

Affiliation:

1. Ecology and Evolutionary Biology Department, University of California, Los Angeles, Los Angeles, United States

2. I-BioStat, Data Science Institute, Hasselt University, Hasselt, Belgium

3. Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium

4. National Marine Mammal Foundation, San Diego, United States

5. Biomathematics Department, University of California, Los Angeles, Los Angeles, United States

Abstract

Understanding and mitigating SARS-CoV-2 transmission hinges on antibody and viral RNA data that inform exposure and shedding, but extensive variation in assays, study group demographics and laboratory protocols across published studies confounds inference of true biological patterns. Our meta-analysis leverages 3214 datapoints from 516 individuals in 21 studies to reveal that seroconversion of both IgG and IgM occurs around 12 days post-symptom onset (range 1–40), with extensive individual variation that is not significantly associated with disease severity. IgG and IgM detection probabilities increase from roughly 10% at symptom onset to 98–100% by day 22, after which IgM wanes while IgG remains reliably detectable. RNA detection probability decreases from roughly 90% to zero by day 30, and is highest in feces and lower respiratory tract samples. Our findings provide a coherent evidence base for interpreting clinical diagnostics, and for the mathematical models and serological surveys that underpin public health policies.

Funder

H2020 Marie Skłodowska-Curie Actions

Defense Advanced Research Projects Agency

UCLA AIDS Institute and Charity Treks

National Science Foundation

U.S. Department of Defense

Cooperative Ecosystem Studies Unit

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3