tRNA sequences can assemble into a replicator

Author:

Kühnlein Alexandra1ORCID,Lanzmich Simon A1,Braun Dieter1ORCID

Affiliation:

1. Systems Biophysics, Physics Department, Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany

Abstract

Can replication and translation emerge in a single mechanism via self-assembly? The key molecule, transfer RNA (tRNA), is one of the most ancient molecules and contains the genetic code. Our experiments show how a pool of oligonucleotides, adapted with minor mutations from tRNA, spontaneously formed molecular assemblies and replicated information autonomously using only reversible hybridization under thermal oscillations. The pool of cross-complementary hairpins self-selected by agglomeration and sedimentation. The metastable DNA hairpins bound to a template and then interconnected by hybridization. Thermal oscillations separated replicates from their templates and drove an exponential, cross-catalytic replication. The molecular assembly could encode and replicate binary sequences with a replication fidelity corresponding to 85–90 % per nucleotide. The replication by a self-assembly of tRNA-like sequences suggests that early forms of tRNA could have been involved in molecular replication. This would link the evolution of translation to a mechanism of molecular replication.

Funder

Deutsche Forschungsgemeinschaft

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference68 articles.

1. From self-replication to replicator systems en route to de novo life;Adamski;Nature Reviews Chemistry,2020

2. Emergence of a new Self-Replicator from a dynamic combinatorial library requires a specific Pre-Existing replicator;Altay;Journal of the American Chemical Society,2017

3. Systems chemistry;Ashkenasy;Chemical Society Reviews,2017

4. In-ice evolution of RNA polymerase ribozyme activity;Attwater;Nature Chemistry,2013

5. Hydrogen peroxide thermochemical oscillator as driver for primordial RNA replication;Ball;Journal of the Royal Society Interface,2014

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3