Release-dependent feedback inhibition by a presynaptically localized ligand-gated anion channel

Author:

Takayanagi-Kiya Seika1,Zhou Keming12,Jin Yishi12ORCID

Affiliation:

1. Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, San Diego, United States

2. Howard Hughes Medical Institute, University of California, San Diego, San Diego, United States

Abstract

Presynaptic ligand-gated ion channels (LGICs) have long been proposed to affect neurotransmitter release and to tune the neural circuit activity. However, the understanding of their in vivo physiological action remains limited, partly due to the complexity in channel types and scarcity of genetic models. Here we report that C. elegans LGC-46, a member of the Cys-loop acetylcholine (ACh)-gated chloride (ACC) channel family, localizes to presynaptic terminals of cholinergic motor neurons and regulates synaptic vesicle (SV) release kinetics upon evoked release of acetylcholine. Loss of lgc-46 prolongs evoked release, without altering spontaneous activity. Conversely, a gain-of-function mutation of lgc-46 shortens evoked release to reduce synaptic transmission. This inhibition of presynaptic release requires the anion selectivity of LGC-46, and can ameliorate cholinergic over-excitation in a C. elegans model of excitation-inhibition imbalance. These data demonstrate a novel mechanism of presynaptic negative feedback in which an anion-selective LGIC acts as an auto-receptor to inhibit SV release.

Funder

The Nakajima Foundation

Howard Hughes Medical Institute

National Institutes of Health

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference51 articles.

1. A regulatory cascade of three homeobox genes, ceh-10, ttx-3 and ceh-23, controls cell fate specification of a defined interneuron class in C. elegans;Altun-Gultekin;Development,2001

2. Presynaptic and postsynaptic GABAA receptors in rat suprachiasmatic nucleus;Belenky;Neuroscience,2003

3. Presynaptic UNC-31 (CAPS) is required to activate the G alpha(s) pathway of the Caenorhabditis elegans synaptic signaling network;Charlie;Genetics,2006

4. Gaba-like immunoreactive terminals on lumbar motoneurons of the adult cat. A quantitative ultrastructural study;Destombes;Neuroscience Research,1996

5. Presynaptic inhibition at the crayfish neuromuscular junction;Dudel;The Journal of Physiology,1961

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3