A statistical framework for assessing pharmacological responses and biomarkers using uncertainty estimates

Author:

Wang Dennis12ORCID,Hensman James3,Kutkaite Ginte45ORCID,Toh Tzen S6ORCID,Galhoz Ana45ORCID,Lightfoot Howard,Yang Wanjuan,Soleimani Maryam,Barthorpe Syd,Mironenko Tatiana,Beck Alexandra,Richardson Laura,Lleshi Ermira,Hall James,Tolley Charlotte,Barendt William,Dry Jonathan R7,Saez-Rodriguez Julio8ORCID,Garnett Mathew J9,Menden Michael P4510ORCID,Dondelinger Frank11ORCID,

Affiliation:

1. Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom

2. Department of Computer Science, University of Sheffield, Sheffield, United Kingdom

3. PROWLER.io, Cambridge, United Kingdom

4. Institute of Computational Biology, Helmholtz Zentrum München—German Research Center for Environmental Health, Neuherberg, Germany

5. Department of Biology, Ludwig-Maximilians University Munich, Martinsried, Germany

6. The Medical School, University of Sheffield, Sheffield, United Kingdom

7. Research and Early Development, Oncology R&D, AstraZeneca, Boston, United States

8. Institute of Computational Biomedicine,Faculty of Medicine,Heidelberg Universityand Heidelberg University Hospital, Bioquant, Heidelberg, Germany

9. Wellcome Sanger Institute, Cambridge, United Kingdom

10. German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany

11. Centre for Health Informatics, Computation and Statistics, Lancaster Medical School, Lancaster University, Lancaster, United Kingdom

Abstract

High-throughput testing of drugs across molecular-characterised cell lines can identify candidate treatments and discover biomarkers. However, the cells’ response to a drug is typically quantified by a summary statistic from a best-fit dose-response curve, whilst neglecting the uncertainty of the curve fit and the potential variability in the raw readouts. Here, we model the experimental variance using Gaussian Processes, and subsequently, leverage uncertainty estimates to identify associated biomarkers with a new Bayesian framework. Applied to in vitro screening data on 265 compounds across 1074 cancer cell lines, our models identified 24 clinically established drug-response biomarkers, and provided evidence for six novel biomarkers by accounting for association with low uncertainty. We validated our uncertainty estimates with an additional drug screen of 26 drugs, 10 cell lines with 8 to 9 replicates. Our method is applicable to any dose-response data without replicates, and improves biomarker discovery for precision medicine.

Funder

NIHR Sheffield Biomedical Research Centre

Rosetrees Trust

Academy of Medical Sciences

Wellcome Trust

Horizon 2020 - Research and Innovation Framework Programme

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference54 articles.

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3