Affiliation:
1. Department of Chemical & Systems Biology, Stanford University School of Medicine
2. Institute of Molecular Biology, Department of Biology, University of Oregon
3. Department of Pathology, University of Washington
4. Department of Developmental Biology, Stanford University School of Medicine
Abstract
In fluctuating environments, switching between different growth strategies, such as those affecting cell size and proliferation, can be advantageous to an organism. Trade-offs arise, however. Mechanisms that aberrantly increase cell size or proliferation—such as mutations or chemicals that interfere with growth regulatory pathways—can also shorten lifespan. Here we report a natural example of how the interplay between growth and lifespan can be epigenetically controlled. We find that a highly conserved RNA-modifying enzyme, the pseudouridine synthase Pus4/TruB, can act as a prion, endowing yeast with greater proliferation rates at the cost of a shortened lifespan. Cells harboring the prion grow larger and exhibit altered protein synthesis. This epigenetic state, [BIG+] (better in growth), allows cells to heritably yet reversibly alter their translational program, leading to the differential synthesis of dozens of proteins, including many that regulate proliferation and aging. Our data reveal a new role for prion-based control of an RNA-modifying enzyme in driving heritable epigenetic states that transform cell growth and survival.
Funder
National Institute of General Medical Sciences
Burroughs Wellcome Fund
National Institute on Aging
National Science Foundation
National Institutes of Health
Kinship Foundation
Sidney Kimmel Foundation
David & Lucile Packard Foundation
Ford Foundation
Donald E. and Delia B. Baxter Foundation
Publisher
eLife Sciences Publications, Ltd
Subject
General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献