Redox-controlled reorganization and flavin strain within the ribonucleotide reductase R2b–NrdI complex monitored by serial femtosecond crystallography

Author:

John Juliane1ORCID,Aurelius Oskar12,Srinivas Vivek1ORCID,Saura Patricia1ORCID,Kim In-Sik3,Bhowmick Asmit3,Simon Philipp S3ORCID,Dasgupta Medhanjali3,Pham Cindy3,Gul Sheraz3,Sutherlin Kyle D3,Aller Pierre45,Butryn Agata45ORCID,Orville Allen M45ORCID,Cheah Mun Hon6ORCID,Owada Shigeki78ORCID,Tono Kensuke78ORCID,Fuller Franklin D9,Batyuk Alexander9ORCID,Brewster Aaron S3ORCID,Sauter Nicholas K3ORCID,Yachandra Vittal K3,Yano Junko3ORCID,Kaila Ville RI1ORCID,Kern Jan3ORCID,Lebrette Hugo1ORCID,Högbom Martin1ORCID

Affiliation:

1. Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University

2. MAX IV Laboratory, Lund University

3. Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory

4. Diamond Light Source Ltd, Harwell Science and Innovation Campus

5. Research Complex at Harwell, Harwell Science and Innovation Campus

6. Department of Chemistry - Ångström, Molecular Biomimetics, Uppsala University

7. Japan Synchrotron Radiation Research Institute

8. RIKEN SPring-8 Center

9. LCLS, SLAC National Accelerator Laboratory

Abstract

Redox reactions are central to biochemistry and are both controlled by and induce protein structural changes. Here, we describe structural rearrangements and crosstalk within the Bacillus cereus ribonucleotide reductase R2b–NrdI complex, a di-metal carboxylate-flavoprotein system, as part of the mechanism generating the essential catalytic free radical of the enzyme. Femtosecond crystallography at an X-ray free electron laser was utilized to obtain structures at room temperature in defined redox states without suffering photoreduction. Together with density functional theory calculations, we show that the flavin is under steric strain in the R2b–NrdI protein complex, likely tuning its redox properties to promote superoxide generation. Moreover, a binding site in close vicinity to the expected flavin O2 interaction site is observed to be controlled by the redox state of the flavin and linked to the channel proposed to funnel the produced superoxide species from NrdI to the di-manganese site in protein R2b. These specific features are coupled to further structural changes around the R2b–NrdI interaction surface. The mechanistic implications for the control of reactive oxygen species and radical generation in protein R2b are discussed.

Funder

Vetenskapsrådet

European Research Council

Knut och Alice Wallenbergs Stiftelse

National Institutes of Health

Wellcome Trust

Royal Society

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3