Dopamine increases protein synthesis in hippocampal neurons enabling dopamine-dependent LTP

Author:

Fuchsberger Tania1ORCID,Stockwell Imogen2,Woods Matty1,Brzosko Zuzanna1,Greger Ingo H2ORCID,Paulsen Ole1ORCID

Affiliation:

1. Department of Physiology, Development and Neuroscience, Physiological Laboratory, University of Cambridge

2. Neurobiology Division, MRC Laboratory of Molecular Biology

Abstract

The reward and novelty related neuromodulator dopamine plays an important role in hippocampal long-term memory, which is thought to involve protein synthesis-dependent synaptic plasticity. However, the direct effects of dopamine on protein synthesis, and the functional implications of newly synthesized proteins for synaptic plasticity, have not yet been investigated. We have previously reported that timing-dependent synaptic depression (t-LTD) can be converted into potentiation by dopamine application during synaptic stimulation (Brzsoko et al., 2015) or postsynaptic burst activation (Fuchsberger et al., 2022). Here we show that dopamine increases protein synthesis in mouse hippocampal CA1 neurons, enabling dopamine-dependent long-term potentiation (DA-LTP). We found that neuronal activity is required for the dopamine-induced increase in protein synthesis, which is mediated via the Ca 2+ -sensitive adenylate cyclase (AC) subtypes 1/8, cAMP, and cAMP-dependent protein kinase (PKA). Furthermore, dopamine induced a protein synthesis-dependent increase in the AMPA receptor subunit GluA1, but not GluA2. We found that DA-LTP is absent in GluA1 knock-out mice and that it requires calcium-permeable AMPA receptors. Taken together, our results suggest that dopamine together with neuronal activity controls synthesis of plasticity-related proteins, including GluA1, which enable DA-LTP via a signalling pathway distinct from that of conventional LTP.

Publisher

eLife Sciences Publications, Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3