Integration of ATAC and RNA-sequencing identifies chromatin and transcriptomic signatures in classical and non-classical zebrafish osteoblasts and indicates mechanisms of entpd5a regulation

Author:

Petratou Kleio1ORCID,Stehling Martin2,Müller Ferenc3,Schulte-Merker Stefan1ORCID

Affiliation:

1. Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WU Münster

2. Flow Cytometry Unit, Max Planck Institute for Molecular Biomedicine

3. Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham

Abstract

Two types of osteoblasts are required to assemble the zebrafish embryonic skeleton: classical osteoblasts homologous to the mammalian cell, and notochord sheath cells, which serve as non-classical osteoblasts. The gene entpd5a is critically required for ossification via both types of osteoblasts. Despite the indispensability of zebrafish models in vertebrate research, the genetic regulation of bone formation, as well as mechanisms of transcriptional control of entpd5a , remain largely unknown. Here, using a newly generated transgenic line, we isolate classical and non-classical osteoblasts from zebrafish embryos and performed both ATAC-seq and RNA-seq. We analysed results independently and integratively to understand those chromatin dynamics and accompanying transcriptomic changes that occur in different skeletal cell types. We show that although Dlx family factors are playing important roles in classical osteoblast regulation, Hox family factors are involved in governing spinal ossification via non-classical osteoblasts. We further present a resource-driven analysis of the entpd5a promoter, experimentally validating the ATAC-seq dataset and proposing mechanisms of regulating the complex entpd5a expression pattern during zebrafish osteogenesis. Our results thus provide a necessary comprehensive resource for the field of bone development and indicate spatio-temporally regulated promoter/enhancer interactions taking place in the entpd5a locus.

Publisher

eLife Sciences Publications, Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3