Active contraction of microtubule networks

Author:

Foster Peter J1ORCID,Fürthauer Sebastian23,Shelley Michael J2,Needleman Daniel J13

Affiliation:

1. John A. Paulson School of Engineering and Applied Sciences, FAS Center for Systems Biology, Harvard University, Cambridge, United States

2. Courant Institute of Mathematical Science, New York University, New York, United States

3. Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States

Abstract

Many cellular processes are driven by cytoskeletal assemblies. It remains unclear how cytoskeletal filaments and motor proteins organize into cellular scale structures and how molecular properties of cytoskeletal components affect the large-scale behaviors of these systems. Here, we investigate the self-organization of stabilized microtubules in Xenopus oocyte extracts and find that they can form macroscopic networks that spontaneously contract. We propose that these contractions are driven by the clustering of microtubule minus ends by dynein. Based on this idea, we construct an active fluid theory of network contractions, which predicts a dependence of the timescale of contraction on initial network geometry, a development of density inhomogeneities during contraction, a constant final network density, and a strong influence of dynein inhibition on the rate of contraction, all in quantitative agreement with experiments. These results demonstrate that the motor-driven clustering of filament ends is a generic mechanism leading to contraction.

Funder

National Science Foundation

National Institutes of Health

Human Frontier Science Program

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference53 articles.

1. Molecular motors robustly drive active gels to a critically connected state;Alvarado;Nature Physics,2013

2. A quantitative analysis of contractility in active cytoskeletal protein networks;Bendix;Biophysical Journal,2008

3. Microscopic origins of anisotropic active stress in motor-driven nematic liquid crystals;Blackwell;Soft Matter,2016

4. Physical basis of spindle self-organization;Brugués;Proceedings of the National Academy of Sciences of the United States of America,2014

5. Slide-and-cluster models for spindle assembly;Burbank;Current Biology,2007

Cited by 116 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3