A scene with an invisible wall - navigational experience shapes visual scene representation

Author:

Li Shi Pui Donald1ORCID,Shao Jiayu2,Lu Zhengang3,McCloskey Michael1,Park Soojin14

Affiliation:

1. Department of Cognitive Science, Johns Hopkins University

2. Laboratory of Brain and Cognition, National Institute of Mental Health

3. Department of Psychology, New York University

4. Department of Psychology, Yonsei University

Abstract

Human navigation heavily relies on visual information. Although many previous studies have investigated how navigational information is inferred from visual features of scenes, little is understood about the impact of navigational experience on visual scene representation. In this study, we examined how navigational experience influences both the behavioral and neural responses to a visual scene. During training, participants navigated in the virtual reality (VR) environments which we manipulated navigational experience while holding the visual properties of scenes constant. Half of the environments allowed free navigation (navigable), while the other half featured an ‘invisible wall’ preventing the participants to continue forward even though the scene was visually navigable (non-navigable). During testing, participants viewed scene images from the VR environment while completing either a behavioral perceptual identification task (Experiment1) or an fMRI scan (Experiment2). Behaviorally, we found that participants judged a scene pair to be significantly more visually different if their prior navigational experience varied, even after accounting for visual similarities between the scene pairs. Neurally, multi-voxel pattern of the parahippocampal place area (PPA) distinguished visual scenes based on prior navigational experience alone. These results suggest that the human visual scene cortex represents information about navigability obtained through prior experience, beyond those computable from the visual properties of the scene. Taken together, these results suggest that scene representation is modulated by prior navigational experience to help us construct a functionally meaningful visual environment.

Publisher

eLife Sciences Publications, Ltd

Reference23 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3