Glia control experience-dependent plasticity in an olfactory critical period

Author:

Leier Hans C1,Foden Alexander J1,Jindal Darren A1,Wilkov Abigail J1,Van der Linden Costello Paola1,Vanderzalm Pamela J2,Coutinho-Budd Jaeda C3,Tabuchi Masashi1,Broihier Heather T1ORCID

Affiliation:

1. Department of Neurosciences, Case Western Reserve University School of Medicine

2. Department of Biology, John Carroll University, University Heights

3. Department of Neuroscience, University of Virginia School of Medicine

Abstract

Sensory experience during developmental critical periods has lifelong consequences for circuit function and behavior, but the molecular and cellular mechanisms through which experience causes these changes are not well understood. The Drosophila antennal lobe houses synapses between olfactory sensory neurons (OSNs) and downstream projection neurons (PNs) in stereotyped glomeruli. Many glomeruli exhibit structural plasticity in response to early-life odor exposure, indicating a general sensitivity of the fly olfactory circuitry to early sensory experience. We recently found that glia regulate the development of the antennal lobe in young adult flies, leading us to ask if glia also drive experience-dependent plasticity. Here we define a critical period for structural and functional plasticity of OSN-PN synapses in the ethyl butyrate (EB)-sensitive glomerulus VM7. EB exposure for the first two days post-eclosion drives large-scale reductions in glomerular volume, presynapse number, and post-synaptic activity. The highly conserved engulfment receptor Draper is required for this critical period plasticity. Specifically, ensheathing glia upregulate Draper expression, invade the VM7 glomerulus, and phagocytose OSN presynaptic terminals in response to critical-period EB exposure. Crucially, synapse pruning during the critical period has long-term consequences for circuit function since both OSN-PN synapse number and spontaneous activity of PNs remain persistently decreased. These data demonstrate experience-dependent pruning of synapses in olfactory circuitry and argue that the Drosophila antennal lobe will be a powerful model for defining the function of glia in critical period plasticity.

Publisher

eLife Sciences Publications, Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3