Ant collective cognition allows for efficient navigation through disordered environments

Author:

Gelblum Aviram1,Fonio Ehud1,Rodeh Yoav12ORCID,Korman Amos3ORCID,Feinerman Ofer1ORCID

Affiliation:

1. Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel

2. Department of Software Engineering, Ort Braude College, Karmiel, Israel

3. The Research Institute on the Foundations of Computer Science (IRIF), CNRS and University of Paris, Paris, France

Abstract

The cognitive abilities of biological organisms only make sense in the context of their environment. Here, we study longhorn crazy ant collective navigation skills within the context of a semi-natural, randomized environment. Mapping this biological setting into the ‘Ant-in-a-Labyrinth’ framework which studies physical transport through disordered media allows us to formulate precise links between the statistics of environmental challenges and the ants’ collective navigation abilities. We show that, in this environment, the ants use their numbers to collectively extend their sensing range. Although this extension is moderate, it nevertheless allows for extremely fast traversal times that overshadow known physical solutions to the ‘Ant-in-a-Labyrinth’ problem. To explain this large payoff, we use percolation theory and prove that whenever the labyrinth is solvable, a logarithmically small sensing range suffices for extreme speedup. Overall, our work demonstrates the potential advantages of group living and collective cognition in increasing a species’ habitable range.

Funder

Horizon 2020 Framework Programme

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference81 articles.

1. Tree graph inequalities and critical behavior in percolation models;Aizenman;Journal of Statistical Physics,1984

2. Electroreception and electrogenesis;Albert;The Physiology of Fishes,2005

3. Routing complexity of faulty networks;Angel;Random Structures and Algorithms,2008

4. On the chemical distance for supercritical bernoulli percolation;Antal;The Annals of Probability,1996

5. Object localization using a biosonar beam: how opening your mouth improves localization;Arditi;Royal Society Open Science,2015

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3