Structure and mechanism of the Mrp complex, an ancient cation/proton antiporter

Author:

Steiner Julia1,Sazanov Leonid1ORCID

Affiliation:

1. Institute of Science and Technology Austria, Klosterneuburg, Austria

Abstract

Multiple resistance and pH adaptation (Mrp) antiporters are multi-subunit Na+(or K+)/H+exchangers representing an ancestor of many essential redox-driven proton pumps, such as respiratory complex I. The mechanism of coupling between ion or electron transfer and proton translocation in this large protein family is unknown. Here, we present the structure of the Mrp complex fromAnoxybacillus flavithermussolved by cryo-EM at 3.0 Å resolution. It is a dimer of seven-subunit protomers with 50 trans-membrane helices each. Surface charge distribution within each monomer is remarkably asymmetric, revealing probable proton and sodium translocation pathways. On the basis of the structure we propose a mechanism where the coupling between sodium and proton translocation is facilitated by a series of electrostatic interactions between a cation and key charged residues. This mechanism is likely to be applicable to the entire family of redox proton pumps, where electron transfer to substrates replaces cation movements.

Funder

Austrian Academy of Sciences

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference59 articles.

1. PHENIX: a comprehensive Python-based system for macromolecular structure solution;Adams;Acta Crystallographica Section D Biological Crystallography,2010

2. Cryo-EM structures of complex I from mouse heart mitochondria in two biochemically defined states;Agip;Nature Structural & Molecular Biology,2018

3. Calcium efflux from Escherichia coli evidence for two systems;Ambudkar;The Journal of Biological Chemistry,1984

4. Radiation damage in electron cryomicroscopy;Baker;Methods in Enzymology,2010

5. Crystal structure of the entire respiratory complex I;Baradaran;Nature,2013

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3