Lichen mimesis in mid-Mesozoic lacewings

Author:

Fang Hui12,Labandeira Conrad C123,Ma Yiming1,Zheng Bingyu1,Ren Dong1,Wei Xinli4,Liu Jiaxi1,Wang Yongjie1ORCID

Affiliation:

1. College of Life Sciences and Academy for Multidisciplinary Studies, Capital Normal University, Beijing, China

2. Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington DC, United States

3. Department of Entomology, University of Maryland, College Park, United States

4. State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China

Abstract

Animals mimicking other organisms or using camouflage to deceive predators are vital survival strategies. Modern and fossil insects can simulate diverse objects. Lichens are an ancient symbiosis between a fungus and an alga or a cyanobacterium that sometimes have a plant-like appearance and occasionally are mimicked by modern animals. Nevertheless, lichen models are almost absent in fossil record of mimicry. Here, we provide the earliest fossil evidence of a mimetic relationship between the moth lacewing mimic Lichenipolystoechotes gen. nov. and its co-occurring fossil lichen model Daohugouthallus ciliiferus. We corroborate the lichen affinity of D. ciliiferus and document this mimetic relationship by providing structural similarities and detailed measurements of the mimic’s wing and correspondingly the model’s thallus. Our discovery of lichen mimesis predates modern lichen-insect associations by 165 million years, indicating that during the mid-Mesozoic, the lichen-insect mimesis system was well established and provided lacewings with highly honed survival strategies.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

Academy for Multidisciplinary Studies of Capital Normal University

Capacity Building for Sci-Tech Innovation - Fundamental Scientific Research Funds

Program for Changjiang Scholars and Innovative Research Team in University

Support Project of High Level Teachers in Beijing Municipal Universities

Graduate Student Program for International Exchange and Joint Supervision at Capital Normal University

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3