Chromatin mapping identifies BasR, a key regulator of bacteria-triggered production of fungal secondary metabolites

Author:

Fischer Juliane12,Müller Sebastian Y3ORCID,Netzker Tina1ORCID,Jäger Nils4,Gacek-Matthews Agnieszka56,Scherlach Kirstin7,Stroe Maria C12,García-Altares María7,Pezzini Francesco3ORCID,Schoeler Hanno12,Reichelt Michael8ORCID,Gershenzon Jonathan8,Krespach Mario KC12,Shelest Ekaterina3,Schroeckh Volker1ORCID,Valiante Vito9ORCID,Heinzel Thorsten4,Hertweck Christian710,Strauss Joseph5ORCID,Brakhage Axel A12ORCID

Affiliation:

1. Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany

2. Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany

3. Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany

4. Department of Biochemistry, Friedrich Schiller University, Jena, Germany

5. Department for Applied Genetics and Cell Biology, BOKU University of Natural Resources and Life Sciences, Vienna, Austria

6. Institute of Microbiology, University of Veterinary Medicine, Vienna, Austria

7. Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany

8. Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany

9. Leibniz Research Group – Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany

10. Chair for Natural Product Chemistry, Friedrich Schiller University, Jena, Germany

Abstract

The eukaryotic epigenetic machinery can be modified by bacteria to reprogram the response of eukaryotes during their interaction with microorganisms. We discovered that the bacterium Streptomyces rapamycinicus triggered increased chromatin acetylation and thus activation of the silent secondary metabolism ors gene cluster in the fungus Aspergillus nidulans. Using this model, we aim understanding mechanisms of microbial communication based on bacteria-triggered chromatin modification. Using genome-wide ChIP-seq analysis of acetylated histone H3, we uncovered the unique chromatin landscape in A. nidulans upon co-cultivation with S. rapamycinicus and relate changes in the acetylation to that in the fungal transcriptome. Differentially acetylated histones were detected in genes involved in secondary metabolism, in amino acid and nitrogen metabolism, in signaling, and encoding transcription factors. Further molecular analyses identified the Myb-like transcription factor BasR as the regulatory node for transduction of the bacterial signal in the fungus and show its function is conserved in other Aspergillus species.

Funder

Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie – Hans-Knöll-Institut

Deutsche Forschungsgemeinschaft

Bundesministerium für Bildung und Forschung

Horizon 2020 Framework Programme

Austrian Science Fund

Lower Austria Science Fund(NFB)

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3