Role of framework mutations and antibody flexibility in the evolution of broadly neutralizing antibodies

Author:

Ovchinnikov Victor1ORCID,Louveau Joy E2,Barton John P3456ORCID,Karplus Martin17,Chakraborty Arup K34568ORCID

Affiliation:

1. Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States

2. Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, United States

3. Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, United States

4. Department of Physics, Massachusetts Institute of Technology, Cambridge, United States

5. Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, United States

6. Ragon Institute of MGH, MIT and Harvard, Cambridge, United States

7. Laboratoire de Chimie Biophysique, ISIS, Universite de Strasbourg, Strasbourg, France

8. Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, United States

Abstract

Eliciting antibodies that are cross reactive with surface proteins of diverse strains of highly mutable pathogens (e.g., HIV, influenza) could be key for developing effective universal vaccines. Mutations in the framework regions of such broadly neutralizing antibodies (bnAbs) have been reported to play a role in determining their properties. We used molecular dynamics simulations and models of affinity maturation to study specific bnAbs against HIV. Our results suggest that there are different classes of evolutionary lineages for the bnAbs. If germline B cells that initiate affinity maturation have high affinity for the conserved residues of the targeted epitope, framework mutations increase antibody rigidity as affinity maturation progresses to evolve bnAbs. If the germline B cells exhibit weak/moderate affinity for conserved residues, an initial increase in flexibility via framework mutations may be required for the evolution of bnAbs. Subsequent mutations that increase rigidity result in highly potent bnAbs. Implications of our results for immunogen design are discussed.

Funder

Lawrence Livermore National Laboratory

Ragon Institute of MGH, MIT and Harvard

CHARMM Development Project

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3