Discovery and characterization of a prevalent human gut bacterial enzyme sufficient for the inactivation of a family of plant toxins

Author:

Koppel Nitzan1ORCID,Bisanz Jordan E2ORCID,Pandelia Maria-Eirini3ORCID,Turnbaugh Peter J24ORCID,Balskus Emily P15ORCID

Affiliation:

1. Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States

2. Department of Microbiology & Immunology, University of California, San Francisco, United States

3. Department of Biochemistry, Brandeis University, Waltham, United States

4. Chan Zuckerberg Biohub, San Francisco, United States

5. Broad Institute, Cambridge, United States

Abstract

Although the human gut microbiome plays a prominent role in xenobiotic transformation, most of the genes and enzymes responsible for this metabolism are unknown. Recently, we linked the two-gene ‘cardiac glycoside reductase’ (cgr) operon encoded by the gut Actinobacterium Eggerthella lenta to inactivation of the cardiac medication and plant natural product digoxin. Here, we compared the genomes of 25 E. lenta strains and close relatives, revealing an expanded 8-gene cgr-associated gene cluster present in all digoxin metabolizers and absent in non-metabolizers. Using heterologous expression and in vitro biochemical characterization, we discovered that a single flavin- and [4Fe-4S] cluster-dependent reductase, Cgr2, is sufficient for digoxin inactivation. Unexpectedly, Cgr2 displayed strict specificity for digoxin and other cardenolides. Quantification of cgr2 in gut microbiomes revealed that this gene is widespread and conserved in the human population. Together, these results demonstrate that human-associated gut bacteria maintain specialized enzymes that protect against ingested plant toxins.

Funder

Smith family

National Science Foundation

National Institutes of Health

Natural Sciences and Engineering Research Council of Canada

Searle Scholars Program

UCSF Department of Microbiology and Immunology

Damon Runyon Cancer Research Foundation

Chan Zuckerberg Biohub

University of California, San Francisco

David and Lucile Packard Foundation

George W. Merck Fellowship

Bill and Melinda Gates Foundation

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3