Pigment cell progenitor heterogeneity and reiteration of developmental signaling underlie melanocyte regeneration in zebrafish
Author:
Frantz William Tyler12ORCID,
Iyengar Sharanya12,
Neiswender James12,
Cousineau Alyssa1,
Maehr René1ORCID,
Ceol Craig J12ORCID
Affiliation:
1. Program in Molecular Medicine, University of Massachusetts Medical School
2. Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School
Abstract
Tissue-resident stem and progenitor cells are present in many adult organs, where they are important for organ homeostasis and repair in response to injury. However, the signals that activate these cells and the mechanisms governing how these cells renew or differentiate are highly context-dependent and incompletely understood, particularly in non-hematopoietic tissues. In the skin, melanocyte stem and progenitor cells are responsible for replenishing mature pigmented melanocytes. In mammals, these cells reside in the hair follicle bulge and bulb niches where they are activated during homeostatic hair follicle turnover and following melanocyte destruction, as occurs in vitiligo and other skin hypopigmentation disorders. Recently, we identified melanocyte progenitors in adult zebrafish skin. To elucidate mechanisms governing melanocyte progenitor renewal and differentiation we analyzed individual transcriptomes from thousands of melanocyte lineage cells during the regeneration process. We identified transcriptional signatures for progenitors, deciphered transcriptional changes and intermediate cell states during regeneration, and analyzed cell–cell signaling changes to discover mechanisms governing melanocyte regeneration. We identified KIT signaling via the RAS/MAPK pathway as a regulator of melanocyte progenitor direct differentiation and asymmetric division. Our findings show how activation of different subpopulations of mitfa-positive cells underlies cellular transitions required to properly reconstitute the melanocyte pigmentary system following injury.
Funder
National Institute of Arthritis and Musculoskeletal and Skin Diseases
National Institute of General Medical Sciences
National Cancer Institute
Publisher
eLife Sciences Publications, Ltd
Subject
General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献