Vein fate determined by flow-based but time-delayed integration of network architecture

Author:

Marbach Sophie1ORCID,Ziethen Noah2ORCID,Bastin Leonie2,Bäuerle Felix K2,Alim Karen23ORCID

Affiliation:

1. Courant Institute of Mathematical Sciences, New York University

2. Max Planck Institute for Dynamics and Self-Organization

3. Center for Protein Assemblies and Department of Bioscience, School of Natural Sciences, Technical University of Munich

Abstract

Veins in vascular networks, such as in blood vasculature or leaf networks, continuously reorganize, grow or shrink, to minimize energy dissipation. Flow shear stress on vein walls has been set forth as the local driver for a vein’s continuous adaptation. Yet, shear feedback alone cannot account for the observed diversity of vein dynamics – a puzzle made harder by scarce spatiotemporal data. Here, we resolve network-wide vein dynamics and shear rate during spontaneous reorganization in the prototypical vascular networks of Physarum polycephalum. Our experiments reveal a plethora of vein dynamics (stable, growing, shrinking) where the role of shear is ambiguous. Quantitative analysis of our data reveals that (a) shear rate indeed feeds back on vein radius, yet, with a time delay of 1–3 min. Further, we reconcile the experimentally observed disparate vein fates by developing a model for vein adaptation within a network and accounting for the observed time delay. The model reveals that (b) vein fate is determined by parameters – local pressure or relative vein resistance – which integrate the entire network’s architecture, as they result from global conservation of fluid volume. Finally, we observe avalanches of network reorganization events that cause entire clusters of veins to vanish. Such avalanches are consistent with network architecture integrating parameters governing vein fate as vein connections continuously change. As the network architecture integrating parameters intrinsically arise from laminar fluid flow in veins, we expect our findings to play a role across flow-based vascular networks.

Funder

National Science Foundation

Max Planck Society

Horizon 2020 - Research and Innovation Framework Programme

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference82 articles.

1. Experimental models for murray’s law;Akita;Journal of Physics D,2017

2. Random network peristalsis in physarum polycephalum organizes fluid flows across an individual;Alim;PNAS,2013

3. Fluid flows shaping organism morphology;Alim;Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences,2018

4. Mechanochemical pattern formation in simple models of active viscoelastic fluids and solids;Alonso;Journal of Physics D,2017

5. Die Erforschung des Chaos

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3