Viscoelastic properties of suspended cells measured with shear flow deformation cytometry

Author:

Gerum Richard12ORCID,Mirzahossein Elham1,Eroles Mar3ORCID,Elsterer Jennifer1,Mainka Astrid1,Bauer Andreas1,Sonntag Selina1,Winterl Alexander1,Bartl Johannes1,Fischer Lena1,Abuhattum Shada4,Goswami Ruchi4,Girardo Salvatore4,Guck Jochen14,Schrüfer Stefan5,Ströhlein Nadine1,Nosratlo Mojtaba1,Herrmann Harald6,Schultheis Dorothea6,Rico Felix3ORCID,Müller Sebastian Johannes7ORCID,Gekle Stephan7,Fabry Ben1ORCID

Affiliation:

1. Department of Physics, Friedrich-Alexander University Erlangen-Nurnberg

2. Department of Physics and Astronomy, York-University Toronto

3. Aix-Marseille Universite´, CNRS, Inserm, LAI, Turing centre for living systems

4. Max Planck Institute for the Science of Light and Max-Planck-Zentrum fur Physik und Medizin

5. Institute of Polymer Materials, Friedrich-Alexander University Erlangen-Nurnberg

6. Institute of Neuropathology, University Hospital Erlangen

7. Department of Physics, University of Bayreuth

Abstract

Numerous cell functions are accompanied by phenotypic changes in viscoelastic properties, and measuring them can help elucidate higher level cellular functions in health and disease. We present a high-throughput, simple and low-cost microfluidic method for quantitatively measuring the elastic (storage) and viscous (loss) modulus of individual cells. Cells are suspended in a high-viscosity fluid and are pumped with high pressure through a 5.8 cm long and 200 µm wide microfluidic channel. The fluid shear stress induces large, ear ellipsoidal cell deformations. In addition, the flow profile in the channel causes the cells to rotate in a tank-treading manner. From the cell deformation and tank treading frequency, we extract the frequency-dependent viscoelastic cell properties based on a theoretical framework developed by R. Roscoe [1] that describes the deformation of a viscoelastic sphere in a viscous fluid under steady laminar flow. We confirm the accuracy of the method using atomic force microscopy-calibrated polyacrylamide beads and cells. Our measurements demonstrate that suspended cells exhibit power-law, soft glassy rheological behavior that is cell-cycle-dependent and mediated by the physical interplay between the actin filament and intermediate filament networks.

Funder

Deutsche Forschungsgemeinschaft

Horizon 2020

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference53 articles.

1. Tensorflow: A system for large-scale machine learning;Abadi,2016

2. Correction of microrheological measurements of soft samples with atomic force microscopy for the hydrodynamic drag on the cantilever;Alcaraz;Langmuir,2002

3. Microrheology of human lung epithelial cells measured by atomic force microscopy;Alcaraz;Biophysical Journal,2003

4. Power laws in microrheology experiments on living cells: comparative analysis and modeling;Balland;Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics,2006

5. Mechanical plasticity of cells;Bonakdar;Nature Materials,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3