A packaging signal-binding protein regulates the assembly checkpoint of integrative filamentous phages

Author:

Yeh Ting-Yu1ORCID,Feehley Michael C.1,Feehley Patrick J.1ORCID,Ooi Vivian Y.2,Hung Yi-Yung3ORCID,Wang Shao-Cheng45ORCID,Contreras Gregory P.1ORCID

Affiliation:

1. Agricultural Biotechnology Laboratory, Auxergen Inc., Riti Rossi Colwell Center

2. Walt Whitman High School

3. Department of Psychiatry, Kaohsiung Municipal Feng-Shan Hospital – under the management of Chang Gung Medical Foundation

4. Department of Psychiatry, Taoyuan General Hospital, Ministry of Health and Welfare

5. Department of Nurse-Midwifery and Women Health, National Taipei University of Nursing and Health Sciences

Abstract

Many integrative filamentous phages not only lack Ff coliphage homologues essential for assembly but also have distinct packaging signals (PS). Their encapsidation remains completely uncharacterized to date. Here we report the first evidence of a PS-dependent checkpoint for integrative filamentous phage assembly. Suppressor screening of PS-deficient phages identified an unknown protein, PSB15 ( PS - b inding 15 kDa), crucial for encapsidation. The WAGFXF motif of the PSB15 N-terminus directly binds to PS DNA with conformational change, while suppressor mutations relieve DNA binding specificity constraints to rescue assembly arrest. PSB15 interacts with phospholipid cardiolipin via its basic helix and C-terminus, and recruits PS DNA to the inner membrane (IM). The PSB15-PS complex is released from the IM by interaction between its hydrophobic linker and thioredoxin (Trx), a host protein that is required for Ff assembly but whose mechanisms are still unclear. Live cell imaging shows that thioredoxin and DNA binding regulate the dwelling time of PSB15 at cell poles, suggesting that they both facilitate the dissociation of PSB15 from the IM. Loss of PSB15 or its PS-binding and IM-targeting/dissociation activity compromised virus egress, indicating that the PS/PSB15/Trx complex establishes a regulatory phage assembly checkpoint critical for integrative phage infection and life cycles.

Publisher

eLife Sciences Publications, Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3