Investigating working memory updating processes of the human subcortex using 7 Tesla fMRI

Author:

Trutti Anne C12ORCID,Sjoerds Zsuzsika2ORCID,Boag Russell J1ORCID,Walstra Solenn LY1ORCID,Miletić Steven12ORCID,Isherwood Scott SJ1ORCID,Bazin Pierre-Louis3ORCID,Hommel Bernhard4ORCID,Habli Sarah5ORCID,Tse Desmond HY5ORCID,Håberg Asta K5ORCID,Forstmann Birte U1ORCID

Affiliation:

1. Integrative Model-Based Neuroscience Research Unit, University of Amsterdam

2. Cognitive Psychology Unit, Institute of Psychology & Leiden Institute for Brain and Cognition, Leiden University

3. Full brain picture Analytics

4. Department of Psychology, Shandong Normal University

5. Norwegian University of Science and Technology

Abstract

The prefrontal-cortex basal ganglia working memory (PBWM) model (Hazy et al., 2007; O’Reilly & Frank, 2006) proposes that working memory representations are updated via a striatal gating mechanism but lacks conclusive empirical support for the postulated subcortical involvement. A growing body of research suggests that dopamine is also involved in working memory updating (Braver & Cohen, 2000; Cools & D’Esposito, 2011; D’Ardenne et al., 2012; Jongkees, 2020). In this study, we investigated subcortical–in particular, possible dopaminergic–involvement in working memory updating subprocesses using the reference-back task and ultra-high field 7 Tesla fMRI. Using a scanning protocol optimized for BOLD-sensitivity in the subcortex, we found no evidence of subcortical activation during working memory gate opening, which challenges the PBWM model’s striatal gating mechanism. However, during gate closing, subcortical activation was observed. Furthermore, a ready-to-update mode demonstrated large-spread subcortical activation, including basal ganglia nuclei, suggesting that the basal ganglia are engaged in general updating processes rather than specifically controlling the working memory gate. Evidence for activity in dopaminergic midbrain regions was also observed in both contrasts. Also, substituting new information into working memory elicited activation in dopamine-producing midbrain regions along with the striatum, thalamus, and prefrontal cortex, indicating engagement of the basal ganglia-thalamo-cortical loop possibly driven by dopaminergic activity. These findings expand our understanding of subcortical regions involved in working memory updating, providing additional insights into the role of the dopaminergic midbrain.

Publisher

eLife Sciences Publications, Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3