Single methyl groups can act as toggle switches to specify transmembrane Protein-protein interactions

Author:

He Li1,Steinocher Helena2,Shelar Ashish1,Cohen Emily B1,Heim Erin N1,Kragelund Birthe B2ORCID,Grigoryan Gevorg3,DiMaio Daniel1456ORCID

Affiliation:

1. Department of Genetics, Yale School of Medicine, New Haven, United States

2. Department of Biology, Structural and NMR Laboratory, University of Copenhagen, Copenhagen, Denmark

3. Department of Computer Science, Dartmouth College, Hanover, United States

4. Department of Therapeutic Radiology, Yale School of Medicine, New Haven, United States

5. Department of Molecular Biophysics & Biochemistry, Yale School of Medicine, New Haven, United States

6. Yale Cancer Center, New Haven, United States

Abstract

Transmembrane domains (TMDs) engage in protein-protein interactions that regulate many cellular processes, but the rules governing the specificity of these interactions are poorly understood. To discover these principles, we analyzed 26-residue model transmembrane proteins consisting exclusively of leucine and isoleucine (called LIL traptamers) that specifically activate the erythropoietin receptor (EPOR) in mouse cells to confer growth factor independence. We discovered that the placement of a single side chain methyl group at specific positions in a traptamer determined whether it associated productively with the TMD of the human EPOR, the mouse EPOR, or both receptors. Association of the traptamers with the EPOR induced EPOR oligomerization in an orientation that stimulated receptor activity. These results highlight the high intrinsic specificity of TMD interactions, demonstrate that a single methyl group can dictate specificity, and define the minimal chemical difference that can modulate the specificity of TMD interactions and the activity of transmembrane proteins.

Funder

National Institutes of Health

Lundbeckfonden

Novo Nordisk Foundation

National Science Foundation

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3