On the objectivity, reliability, and validity of deep learning enabled bioimage analyses

Author:

Segebarth Dennis1ORCID,Griebel Matthias2ORCID,Stein Nikolai2,von Collenberg Cora R1,Martin Corinna1,Fiedler Dominik3,Comeras Lucas B4ORCID,Sah Anupam5ORCID,Schoeffler Victoria6,Lüffe Teresa6,Dürr Alexander2,Gupta Rohini1,Sasi Manju1,Lillesaar Christina6ORCID,Lange Maren D3,Tasan Ramon O4,Singewald Nicolas5ORCID,Pape Hans-Christian3ORCID,Flath Christoph M2ORCID,Blum Robert17ORCID

Affiliation:

1. Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany

2. Department of Business and Economics, University of Würzburg, Würzburg, Germany

3. Institute of Physiology I, Westfälische Wilhlems-Universität, Münster, Germany

4. Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria

5. Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria

6. Department of Child and Adolescent Psychiatry, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany

7. Comprehensive Anxiety Center, Würzburg, Germany

Abstract

Bioimage analysis of fluorescent labels is widely used in the life sciences. Recent advances in deep learning (DL) allow automating time-consuming manual image analysis processes based on annotated training data. However, manual annotation of fluorescent features with a low signal-to-noise ratio is somewhat subjective. Training DL models on subjective annotations may be instable or yield biased models. In turn, these models may be unable to reliably detect biological effects. An analysis pipeline integrating data annotation, ground truth estimation, and model training can mitigate this risk. To evaluate this integrated process, we compared different DL-based analysis approaches. With data from two model organisms (mice, zebrafish) and five laboratories, we show that ground truth estimation from multiple human annotators helps to establish objectivity in fluorescent feature annotations. Furthermore, ensembles of multiple models trained on the estimated ground truth establish reliability and validity. Our research provides guidelines for reproducible DL-based bioimage analyses.

Funder

Deutsche Forschungsgemeinschaft

Graduate School of Life Sciences Wuerzburg

Austrian Science Fund

Interdisziplinaeres Zentrum fuer Klinische Zusammenarbeit Wuerzburg

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference77 articles.

1. Tensorflow: large-scale machine learning on heterogeneous distributed systems;Abadi,2016

2. Reproducibility crisis?;Baker;Nature,2016

3. Transfer learning for cell nuclei classification in histopathology images;Bayramoglu,2016

4. Nucleus segmentation across imaging experiments: the 2018 data science bowl;Caicedo;Nature Methods,2019

5. Elicitation and reduction of fear: behavioural and neuroendocrine indices and brain induction of the immediate-early gene c-fos;Campeau;Neuroscience,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3