Affiliation:
1. Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
Abstract
Life relies on phenomena that range from changes in molecules that occur within nanoseconds to changes in populations that occur over millions of years. Researchers have developed a vast range of experimental techniques to analyze living systems, but a given technique usually only works over a limited range of length or time scales. Therefore, gaining a full understanding of a living system usually requires the integration of information obtained at multiple different scales by two or more techniques. This approach has undoubtedly led to a much better understanding of living systems but, equally, the staggering complexity of these systems, the sophistication and limitations of the techniques available in modern biology, and the need to use two or more techniques, can lead to persistent illusions of knowledge. Here, in an effort to make better use of the experimental techniques we have at our disposal, I propose a broad classification of techniques into six complementary approaches: perturbation, visualization, substitution, characterization, reconstitution, and simulation. Such a taxonomy might also help increase the reproducibility of inferences and improve peer review.
Funder
National Institutes of Health
Publisher
eLife Sciences Publications, Ltd
Subject
General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献