Ocular dominance-dependent binocular combination of monocular neuronal responses in macaque V1

Author:

Zhang Sheng-Hui12,Zhao Xing-Nan12,Jiang Dan-Qing12,Tang Shi-Ming234ORCID,Yu Cong14ORCID

Affiliation:

1. School of Psychological and Cognitive Sciences, Peking University

2. PKU-Tsinghua Center for Life Sciences, Peking University

3. School of Life Sciences, Peking University

4. IDG-McGovern Institute for Brain Research, Peking University

Abstract

Primates rely on two eyes to perceive depth, while maintaining stable vision when either one eye or both eyes are open. Although psychophysical and modeling studies have investigated how monocular signals are combined to form binocular vision, the underlying neuronal mechanisms, particularly in V1 where most neurons exhibit binocularity with varying eye preferences, remain poorly understood. Here, we used two-photon calcium imaging to compare the monocular and binocular responses of thousands of simultaneously recorded V1 superficial-layer neurons in three awake macaques. During monocular stimulation, neurons preferring the stimulated eye exhibited significantly stronger responses compared to those preferring both eyes. However, during binocular stimulation, the responses of neurons preferring either eye were suppressed on the average, while those preferring both eyes were enhanced, resulting in similar neuronal responses irrespective of their eye preferences, and an overall response level similar to that with monocular viewing. A neuronally realistic model of binocular combination, which incorporates ocular dominance-dependent divisive interocular inhibition and binocular summation, is proposed to account for these findings.

Funder

Ministry of Science and Technology of the People's Republic of China

Natural Science Foundation of China

Peking University

Publisher

eLife Sciences Publications, Ltd

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3