A wave of minor de novo DNA methylation initiates in mouse 8-cell embryos and co-regulates imprinted X- chromosome inactivation

Author:

Yue Yuan1,Fu Wei1,Yang Qianying1,Zhang Chao1,Wang Wenjuan1,Chu Meiqiang1,Lyu Qingji1,Tang Yawen1,Cui Jian1,Wang Xiaodong1,Zhang Zhenni1,Tian Jianhui1,An Lei1

Affiliation:

1. State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University

Abstract

DNA methylation is extensively reprogrammed during early stage of mammalian development and is essential for normal embryogenesis. It is well established that mouse embryos acquire genome-wide DNA methylation during implantation, referred to as de novo DNA methylation, from globally hypomethylated blastocysts. However, the fact that the main de novo DNA methyltransferase 3B (DNMT3B) is initially expressed as early as the 8-cell stage during preimplantation development, contradicts the current knowledge about timing of initiation of de novo DNA methylation. Here, we reported that a previously overlooked minor wave of de novo DNA methylation initially occurs during the transition from the 8-cell to blastocyst stage, before the well-known large-scale de novo DNA methylation during implantation. Bioinformatic and functional analyses indicated that minor de novo DNA methylation preferentially occurs on the X chromosome and co-regulates imprinted X-chromosome inactivation via the interaction between DNMT3B and polycomb repressive complexes 2 core components during blastocyst formation. Furthermore, minor de novo DNA methylation also finetunes proliferation, lineage differentiation and metabolic homeostasis of preimplantation embryos, and is critical for embryonic developmental potential and pregnancy outcomes. Thus, our study updates the current knowledge of embryonic de novo DNA methylation, thereby providing a novel insight of early embryonic epigenetic reprogramming.A minor wave of de novo DNA methylation has been initiated prior to blastocyst formation, but not during the implantation period, and co-regulates imprinted X-chromosome inactivation.

Publisher

eLife Sciences Publications, Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3