Imaging plant germline differentiation within Arabidopsis flowers by light sheet microscopy

Author:

Valuchova Sona1,Mikulkova Pavlina1,Pecinkova Jana1,Klimova Jana2,Krumnikl Michal23,Bainar Petr2,Heckmann Stefan4ORCID,Tomancak Pavel5ORCID,Riha Karel1ORCID

Affiliation:

1. Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic

2. IT4Innovations, VSB–Technical University of Ostrava, Ostrava, Czech Republic

3. Department of Computer Science, FEECS VSB – Technical University of Ostrava, Ostrava, Czech Republic

4. Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany

5. Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany

Abstract

In higher plants, germline differentiation occurs during a relatively short period within developing flowers. Understanding of the mechanisms that govern germline differentiation lags behind other plant developmental processes. This is largely because the germline is restricted to relatively few cells buried deep within floral tissues, which makes them difficult to study. To overcome this limitation, we have developed a methodology for live imaging of the germ cell lineage within floral organs of Arabidopsis using light sheet fluorescence microscopy. We have established reporter lines, cultivation conditions, and imaging protocols for high-resolution microscopy of developing flowers continuously for up to several days. We used multiview imagining to reconstruct a three-dimensional model of a flower at subcellular resolution. We demonstrate the power of this approach by capturing male and female meiosis, asymmetric pollen division, movement of meiotic chromosomes, and unusual restitution mitosis in tapetum cells. This method will enable new avenues of research into plant sexual reproduction.

Funder

European Regional Development Fund

Bundesministerium für Bildung und Forschung

Leibniz Institute of Plant Genetics and Crop Plant Research

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3